

위치	오류유형	수정 전	수정 후
264p ②	개념,공식-설명	② LMO 연구시설 허가(BL 3~4) ③ 허가관청 환경위해성 관련 연구시설 과학기술정보통신부 인체위해성 관련 연구시설 질병관리정	© 허가 시 제출해야 하는 서류 ③ 허가신청서 ⑤ 연구시설의 범위와 그 소유 또는 사용에 관한 권리를 증명하는 서류 ⑥ 위해방지시설의 기본설계도서 ④ 허가기준(설비, 기술능력, 인력, 안전관리규정 등)을 갖추었음을 증명하는 서류
		수정 사유	내용 추가
298p 번호 : 11	문제-본문	11 위해수준에 따른 실험 분류(①~③은 순서 무관)	11 위해수준에 따른 실험 분류
		수정 사유	문제 오류
375p 참고	문제-본문	병렬의 합성저항 $R = \sum_{i=1}^{n} \frac{1}{\frac{1}{R_i}}$	병렬의 합성저항 $R = rac{1}{\sum_{i=1}^{n} rac{1}{R_i}}$
		수정 사유	수식 오류
405p (4)의 ②	문제-본문	② 연구실사고 대응단계별 수행업무	② <mark>중대</mark> 연구실사고 대응단계별 수행업무
		수정 사유	이론 오류
446p ⑦의 ©	문제-본문	© 덕트 ③ 덕트 배치·설치하는 장소를 결정한다. ⑤ 덕트의 크기를 결정한다(직경, 재질의 두께, 형태 등). ⑥ 반송속도를 계산한다. 	© 덕트 ③ 반송속도를 계산한다. ⑤ 덕트의 크기를 결정한다(직경, 재질의 두께, 형태 등). ⑥ 덕트 배치·설치하는 장소를 결정한다.
		수정 사유	이론 오류
467p 번호 : 15	문제-본문	안전정보표지 의미 (①) (②) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③) (③)	문제 삭제
		수정 사유	학습가이드 개정에 따라 출제제외된 내용

위치	오류유형	수정 전	수정 후
481p 번호 : 11		(3) 대기 중에 프로판이 누출되었을 때 폭발이 일어날 수 있는지 최소산소농도의 정의를 이용하여 설명하시오(단, 폭발을 위해 필요한 최소점화에너지 이상 존재하고 있다고 가정한다).	(3) 대기 중에 프로판이 누출되었을 때 폭발이 일어날 수 있는지 최소산소농도의 정의를 이용하여 설명하시오(단, 폭발을 위해 필요한 최소점화에너지 이상의 점화원이 존재하고 있다고 가정한다).
		수정 사유	문제 오류
505p 번호 : 11	정답	정답 (1) 제3류 위험물(금수성 물질)	정답 (1) 제3류 위험물(자연발화성 물질 및 금수성 물질)
		수정 사유	정답 오류
542p 번호 : 6	문제-본문	06 다음 안전정보표지의 의미를 순서대로 적으시오. (③) (④) (⑤) (⑥) (⑥) (⑥) (⑤) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥) (⑥)	06 후드의 방해기류 영향을 억제하는 부품 2가지를 적으시오. 정답 플랜지, 플래넘 학습가이드 개정에 따라 출제제외된 내용
578p (2)의 정답 번호 : 8	정답	정답 (2) · 불활성 가스로 완전히 치환한다. · 산소농도를 약 5% 이하로 한다. · 점화원을 제거한다. 수정 사유	정답 (2) · 불활성 가스로 완전히 치환한다. · MOC(최소산소농도) 이하로 산소농도를 낮춘다. · 점화원을 제거한다.

도서의 오류로 학습에 불편드린 점 진심으로 사과드립니다. 더 나은 도서를 만들기 위해 노력하는 시대교육그룹이 되겠습니다.